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An efficient synthesis of the non-proteinogenic amino acid (2R,3S)-4,4,4-trifluoro(OBn)-threonine is
described. Starting with commercially available (S)-Garner’s aldehyde, the desired amino acid was pre-
pared as its hydrochloride salt in five steps and an overall yield of 33% (59% based on recovered starting
material). The utility of this unusual amino acid was demonstrated by its elaboration into a potent and
selective androgen.

� 2010 Elsevier Ltd. All rights reserved.
Incorporating fluorine into molecules of pharmacological inter-
est has played a remarkably important role in drug design and dis-
covery.1 Despite its size similarity to hydrogen, fluorine varies
significantly from hydrogen with regard to its electronegativity,
hydrophobicity, hydrogen-bond acceptor capability (when bonded
to carbon), and resistance to metabolism. Not surprisingly, incor-
porating fluorine into otherwise natural biomolecules can be par-
ticularly interesting. Beyond the utility of such compounds per
se, fluorinated biomolecules can also be powerful extensions to
the extant chiral pool. Many fluorinated analogs of otherwise pro-
teinogenic amino acids have been prepared and studied in a variety
of contexts. In the course of our own research, we needed to access
useful quantities of the O-protected, non-proteinogenic amino acid
(2R,3S)-2-amino-3-benzyloxy-4,4,4-trifluorobutanoic acid hydro-
chloride (Fig. 1).

There have been a few syntheses of (2R,3S)-2-amino-3-hydro-
xy-4,4,4-trifluorobutanoic acid or its enantiomer (2S,3R)-2
-amino-3-hydroxy-4,4,4-trifluorobutanoic acid reported in the lit-
erature. For example, the racemic and non-diastereoselective
aldol-condensation between a glycine–Schiff-base condensate
and trifluoroacetaldehyde has been reported. The diastereomers
were then separated by column chromatography, the products
acetylated, and the enantiomers resolved by a lipase-mediated
saponification.2 Seebach has reported that aldol reaction between
a chiral imidazolidinone and trifluoroacetaldehyde proceeds with
good enantioselectivity and moderate diastereoselectivity.3 It has
also been shown that the desired amino acid can be prepared by
aldol reaction of a glycine, chiral Schiff-base condensate, and tri-
fluoroacetaldehyde.4 Additionally, a ‘from the ground-up’ approach
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comprising a Sharpless asymmetric dihydroxylation to an olefin
and significant further elaboration to yield the desired amino acid
has been described.5

We either perceived or directly experienced challenges in pro-
ceeding with the literature routes, especially in view of our desire
to obtain the O-protected amino acid in gram quantities. Our alter-
nate route is shown below (Scheme 1). We started with the com-
mercially available (S)-Garner’s aldehyde 1 and thus were able to
efficiently leverage the extant chiral pool. We added the trifluoro-
methyl anion equivalent generated by TMSCF3 and TBAF to give 2
as a mixture of two diastereomers in an approximate ratio of 9:1.6

After benzylation and column chromatography, the major and de-
sired stereoisomer 3 was obtained.7 Treatment of 3 with p-TsOH
gave the alcohol 4 in 90% yield. Jones oxidation of 4, followed by
removal of the Boc group using saturated AcOEt with hydrogen
chloride provided 5 as a white solid in 84% yield over two steps.

Having developed a scheme that could produce this unusual
amino acid in synthetically useful quantities, we proceeded to
incorporate the molecule into our target structure 7 (Fig. 2). We
were curious to see whether the alteration in hydrophobicity and
hydrogen acidity compared to the non-fluorinated structure 8
could affect its activity at our biological target, the androgen
receptor.7a

The synthesis of 7 is shown in Scheme 2. The key step in the
scheme is an ipso-fluoro substitution by the amino acid 6, afford-
ing the adduct 10 in modest yield. Intermediate 10 was taken for-
ward by sequentially coupling with the acyl hydrazide 11,
dehydration with TPP/I2,

8 and deprotection with BBr3 to yield the
desired product 7. The binding affinity of compound 7 for the
androgen receptor was assayed and determined to have an IC50

of 290 nM, indicating a significantly lower affinity than that previ-
ously obtained for the non-fluorinated analog compound 8
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Figure 1. (2R,3S)-2-Amino-3-benzyloxy-4,4,4-trifluorobutanoic acid hydrochloride.
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(0.7 nM).9 Surprisingly, despite its relatively low binding affinity,
compound 7 demonstrated significant in vivo activity in the Rat
Herschberger assay.10 At a dose of just 3 mg/kg (orally), compound
7 increased levator ani muscle (‘LABC’) in a castrated rat to a level
significantly above the non-castrated control (‘Sham’) and testos-
terone propionate-treated (‘TP’) controls (Fig. 3). In contrast, com-
pound 7 increased the weight of the prostate to a significantly
lesser degree than that observed for the testosterone-treated or
sham control (Fig. 3). Selectivity of anabolic action on muscle over
androgenic action on prostate is considered a hallmark of tissue-
selective androgens, often referred to as selective androgen recep-
tor modulators (SARMs).

The androgen receptor is a nuclear hormone receptor. While
affinity of a ligand for its cognate nuclear receptor is an important
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Scheme 2. Synthesis of non-steroidal androgen 7 from non-proteinogenic amino
acid 6.
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Scheme 1. Stereoselective synthesis of (2R,3S)-4,4,4-trifluoro(OBn)-threonine from
(S)-Garner’s aldehyde in five steps.
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Figure 2. Structures of target compound 7 and non-fluorinated analog 8.
first requirement, the ultimate biological activity of the ligand–
receptor complex is multi-factorial due to the interaction of the li-
gand–complex with various co-regulatory proteins that can modu-
late the transactivation efficacy of the ligand. Further, in vivo
results are also dependent on numerous additional variables such
as solubility, absorption, and metabolism which might decrease
or increase a given molecule’s final efficacy and potency. As men-
tioned previously, because fluorine can affect a number of physical
parameters, the ultimate biological results from fluorine substitu-
tion are often not predictable a priori. In the instant case, the incor-
poration of fluorine atoms into a compound with high androgen
receptor binding affinity resulted in a compound with low receptor
affinity but potent in vivo activity.

In conclusion, we found this chemistry to be a powerful tool for
our purposes and thought it worth sharing. The other enantiomer
of the described compound could be prepared by starting with
(R)-Garner’s aldehyde. We think it would be interesting to see
whether our described method could be used to readily obtain
the other diastereomer as well. While a small amount could be
available as the minor diastereomer from the extant scheme, we
believe that a more productive approach might include a direct
inversion at the hydroxyl center, perhaps via a Mitsunobu-type hy-
droxyl inversion. In this way, the presently described chemistry
could be readily expanded to provide all four possible
stereiosomers.
*

*^

*

0
20
40
60
80

100
120
140

Veh TP (1 mg/kg) cpd  7 (3 
mg/kg)

Sham

LABC

*
*^

*

0
10
20
30
40
50
60
70

Veh TP (1 mg/kg) cpd  7 (3 
mg/kg)

Sham

Prostate

Figure 3. Effect of compd 7 on levator ani muscle (LABC) and prostate weight in
treated, castrated rats. Organ and muscle weight is on Y-axis and the numbers refer
to weight in milligrams. *q <0.05 compared to vehicle. ^q <0.05 compared to TP and
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